Nobody Wants ML, AI, and Analytics.

They want a UX that provides indispensable decision support, useful insights, and actionable intelligence. 

My free resources below will help you learn how to use human-centered design to create innovative user experiences that turn technical outputs into valuable customer outcomes.

One of the only email subscriptions I read

Your [list] is one of only a few email subscriptions I read. Super bright and always thoughtful.

Nancy Duarte Nancy Duarte
Principal @ Duarte
Author & TED Speaker

Additional Resources

Are customers not getting the value out of your data product, analytics SAAS, or decision support application?

My free self-assessment guide covers 9 key topics to help you make your service indispensable. Each day, for 9 days, you will also get an email lesson that goes deeper into the topic and provides recommendations on how to start taking action.

Want to learn how to design engaging data products your customers and stakeholders will use and value?

My self-guided video course—Designing Human-Centered Data Products—can help you learn the creative problem solving skills that data-driven software leaders need to produce useful, usable applications and solutions. Download the first module's video and written supplement, free.

🎧 Podcast

Free Webinars

See my Speaking page for samples.

🔍 Article Search

Browse by Topic

📖  Reading

Browse my reading list.

Videos

Subscribe to my YouTube Channel to see conference talks, sample UI/UX audits, and more.

Watch Conference Talks

Recent Articles by Brian

“No more dashboards!”

By Brian T. O'Neill

Is it time to stop using dashboards in analytics solutions and data product design?

How to get 1 x 1 research access to users of enterprise data products—when your own company is in the way

By Brian T. O'Neill

Are you a leader in charge of creating innovative ML and analytics solutions within a very large enterprise organization? Getting the “makers” of the solutions talking to real end-users can be extremely difficult. Here’s how to navigate the gatekeepers and bureaucracy so that the data products you spend so much time and money building actually are useful, usable, and valuable.

AI / Product Management / UX Design Predictions for 2021

By Brian T. O'Neill

I’m not putting out a long list of 2021 predictions, but I have a couple that I will mention to you that are on my radar. First, AI/Data Product Management Seems to be Picking Up There seem to be more jobs appearing … Read more

Does an analytical mind block your innovation and creativity?

By Brian T. O'Neill

Data science, analytics, and engineering are in-demand skills, however, when building customer-facing applications and data-driven products, organizations rely on innovation to unlock the power of this data. How can analytical minds practice creativity that leads to innovative solutions?

What’s Wrong with Spotify’s Analytics Emails (a Design/UI/UX Audit)

By Brian T. O'Neill

Today, I’m sharing my impressions of one of Spotify’s analytics touchpoints—a monthly email I receive with a boatload of design choices I mostly hope you will not copy, especially if you’re working in an enterprise capacity. Most of you by now probably know … Read more

Re: Your “Home Depot” Approach to AI/ML

By Brian T. O'Neill

Sorry, returns not accepted.

Better data visualization won’t convince me when to play ⚽️ again

By Brian T. O'Neill

Presenting data and evidence isn’t the same thing as providing indispensable decision support, especially when your insights are experienced in a software application with no Powerpoint deck, narrator, or intimate storytelling.

Designing for AI (UX, UI)

By Brian T. O'Neill

This is an ongoing list of links to articles, slide decks, toolkits, and other resources around designing AI user experiences.  I will keep this updated. 7 Steps to AI Products – Allie K. Miller (slide deck) UX in the Age of … Read more

(8) reasons why data visualization training for your BI team may not increase analytics adoption

By Brian T. O'Neill

Customers want simple, well-designed decision support tools and UX’s that are actionable. Businesses want to see value from data and adoption of data-driven decision making. However, the UX that is afforded to is often simply a byproduct of the analytics team’s engineering, or, at best, “data viz” efforts—and it’s not working. A decade later, success rates for data projects remain unchanged, despite vendor/BI tooling improvements. What are BI/analytics teams still missing? Design.