How to solicit *real* needs from users via UX research interviews

Readers of DFA know that I'm big on not immediately giving customers what they asked for, and instead asking the question "why" to learn what the real latent customer needs are. And for you internal analytics folks, remember your employees, vendors, etc. are your "customers" whether you think of them that way or not! Anyhow, some of you may be wondering why engagement is low, or you're not getting the results you hoped for. If you're not sure where to start, here is a super easy script:

  1. Recruit your customers for a 1-on-1, 30-60min screen-sharing meeting, or in-person meeting (even better). Tell them you're doing some customer research to learn about what is working and not working about the tools/solutions you manage and work on. You can also share that no advance preparation is needed and let them know their feedback would be extremely useful in making your service more useful, usable, and productive in their work. Note: scheduling can take some time, and you can even outsource this effort. One other thing we sometimes do here with research is to avoid sharing the specific thing we're going to discuss, to avoid users going and doing "homework" ahead of time to familiarize themselves. This may not be possible though, but if you can obfuscate it a little, that is sometimes a good thing. Your customer is likely to feel like they are being "tested" during all of this, and so your job is to help them learn that you're there to evaluate the service, and not them. Avoid using the word "test" and use the word "study."
  2. Open the session by asking them to tell you their background/bio. If possible, get permission to record audio/screen capture and mention it is only for internal review purposes. At the session, ask the person, if you don't already know, what their overall job responsibilities are and then ask how your service fits into that. At this point, the customer is self-reporting, so take this with a grain of salt. If they immediately start showing you interactions with your service, that is GREAT. Let them run wild, and keep asking questions that encourage them to demo the product back to you as they use it. Encourage them to "speak out loud" and give praise for feedback. I usually end up repeating the phrase, "thanks, this is awesome feedback" 20 times in a session. Note that you aren't praising their specific actions: you need to say this whether they do the right or wrong thing with the service because the feedback itself is what is being praised. Anyhow, chances are, after the short "bio" chat about their job responsibilities, they probably won't open up any tools as they will be expecting you to lead. As such, you now want them to open the tool and proceed further.
  3. Ask the customer to open up the service/tool you plan to discuss. Note: the study has already started at this very moment. Take special note to focus on what you see them DOING much more than what they are SAYING. Take note of things like
    1. Was the service bookmarked in their browser or easily accessible?
    2. Did it look like they were fumbling around just to launch it (e.g. haven't used it in a while, but don't want to admit it?)
    3. Was the login/password forgotten or not immediately accessible? These are all good signs customers aren't utilizing the service.
    4. If they need help after a bit, help them, and state, "If you haven't used this in a while, it's not a problem. I can help you get access to the tool." Note that this is called an "assist," and you want to do this only after you have concluded that it is rather obvious the customer can't even get past the login. Typically, in research, your job is also to avoid assisting.
      • Remember too, that this is NOT a training session but a discovery session to learn about what is happening in the wild when you aren't around.
      • Additionally, your goal isn't to scold them for not using your service, but to try to solicit useful information and honest facts from them. As such, during this simple act of opening/accessing the service, this a great example of where Actions speak louder than Words. Your customer might have told you they "use it all the time," but in reality, if you see them fumbling to try to simply open your service, you can see that what they're saying may not be quite as true as what they are doing. Keep this concept of "doing" over "saying" in mind as self-reported behavior is often very misleading. This is one of the core things that I see my clients/stakeholders getting wrong. You cannot necessarily believe customers/users' needs as verbally stated. They do not always know what they need, and their reporting of past behavior is often flawed. Which leads me to my final / next step: the recent history question.​
  4. "When did you last use the [service] if you can recall? Can you show me what you did specifically, speaking aloud as you go through it?" This question is specifically worded in such a way that you're not asking them in general how they use the tool, but instead, you are asking them to demonstrate a SPECIFIC use case they worked through to get some useful insights. This is much better as it forces them to use the service and show you their UX. You are likely to learn a ton here, and one of the best things you will learn is stuff you never even knew to ask about! You might see strange behavior patterns, ping-ponging between screens, opening up of external tools/spreadsheets, etc. This is all very good feedback.
    1. If the user fumbles quite a bit with your request and it's obvious they don't know how to use the service, it's ok to just tell them, "if you haven't been in here in awhile, that's ok. Can you tell me what you think this service might be useful for? What might you be able to use this for?" At this point, you're now observing their clicks, and encouraging them to "keep thinking out loud." Note that this is unscripted intentionally, so you want to let them take tangents and follow their instincts. Your job is simply to collect information and not judge their skill with the service.
  5. ​At the end of the session:
    1. Invite them to ask you any questions they may have.
      1. If your service DOES have a way to solve the question they have, don't tell them this and instead ask, "Do you think there is a way to do [do that task]?" Invite them to "try" themselves. If they get entirely lost, but your service does have this feature/need met, provide an assist to them, and then ask them to continue. Remember to encourage them to think aloud the entire time, and tell them, "we're here to evaluate the design, not you." Most customers feel like they are "dumb" when they fumble for too long (we all know that feeling when we can't open a simple bottle, or figure out how to open the door, or some other poorly designed system that seems like it should be easy!).
      2. If your service does NOT have a way to answer their need/question, encourage them to explain to you what end goal they have and what would make the service awesome. It can be pie in the sky; that's ok. What you want to avoid is encouraging them to start designing out the system in that moment, and instead, focus on what they personally, would think is valuable. Users also have a tendency to want to talk for others and think they are unique so watch out for, "I think most people would X, but I probably wouldn't." You want to learn about Y and not X in this case so keep coming back to them with things like, "that's great feedback thanks. Can you tell me what YOU would need/do/want that's different from what you think everyone else needs? I am really curious about your own particular needs and it sounds like you think they might be unique."
    2. Thank them and ask them if you can be in touch with them again in the future as you integrate their feedback. Your job is to develop a long term relationship and let them know that you need continuous user feedback to make the service better, and that their feedback contributes to a better user experience. Most customers love helping out.

Need help? Set up a free micro-consultation call with me on my contact page.

Want More Insights on Designing for Analytics?

The Easiest Way to Simplify Your Product or Solution’s Design

Ok, you probably know this one, but let's dig in a little farther.

I recently started to explore using the TORBrowser when surfing on public wi-fi for more security (later finding out that using a VPN, and not TOR, is what will enable safer surfing). However, in the process of downloading and trying the TORBrowser out, it provided me with a golden example of what you should not to do in your product.

The very first screen I saw when I launched TOR was this:


So, what's the big deal here? First, I will share the answer to today's subject line with you:

Remove everything that is not necessary.  

​Yeah, yeah, you probably have heard that before. Famously, the pope asked Michelangelo how he knew what to carve while creating the statue of David, and his response was along the lines of, "I removed everything that wasn't David." Nice.

Are you removing the cruft and noise from your product?

If we take this thinking further, I would say that today's core takeaway for you is to "remove choices by making good assumptions in your product, wherever possible." You might be wrong sometimes, but you'll be a right a lot of the time.

Jumping back to the TORBrowser UI example above, there is more you can learn from their design choices:

  1. This UI says, "This [option] will work in most situations." Well then, why isn't this automatically selected as a default choice?
    Does this screen now seem necessary to you? Why does the product not just "try" that setting by default, and present the other option as a fallback, if the default fails? Nobody downloaded TORBrowser with a goal to "set it up" with the right networking settings. This entire step is not necessary. It literally says it's not "in most situations."
  2. Right the wrong time. 
    I haven't needed to use this pane yet as the default setting worked (surprise!), but it's an example of the developers trying to present helpful information. That's good. The design problem is that it's appearing at the wrong time in my experience. I don't need this right now, and I don't even want to think about how the networking is configured. It's completely irrelevant. Are you presenting choices at the right time in your product?
  3. Most users don't care how your software works; don't expose the plumbing. 
    ​There are sometimes exceptions to this for certain technical products, but even when there are, once most users have "learned" what they need to learn about the plumbing, it quickly becomes irrelevant. The value has to shine, or people stop paying for the service. That includes products built for technical audiences.
  4. This UI and UX is not fun at all...especially as a first impression.
    It's a needless distraction, it's not fun, and it's got me focused on, "how hard will it be to get this app working?"
  5. The visual design attention (or lack thereof) is undermining the mission of the product. 
    This is the hardest one to teach, but a combination of graphic design choices (probably unconscious ones) here contribute to this UI not feeling particularly safe, secure, and careful. The goal of TORBrowser is to "protect" the user. If you think of words like protection, precision, stability, and safety, then the visual design should reinforce these ideas. The topic of graphic design is hardly something to be captured in an email, but I can leave you with a few suggestions and considerations. Refer to the diagram for a detailed analysis:Image

    1. What could be removed from the TORBrowser UI sample?
    2. Are the invisible things (like padding/margin whitespace choices) consistent, meaningful, and deliberate?
    3. While a single graphic design choice sometimes has the power to impact usability or even the financial the bottom line, typically, it is the sum of numerous small design choices that account for the overall perception of your product's quality and aesthetic.
    4. It's possible to follow "all the rules" and still not have a great product aesthetic or utility. (That's why we have designers.)

Want More Insights on Designing for Analytics?

(8) invisible design problems that are business problems

Today's insight was originally inspired by a newsletter I read from Stephen Anderson on designing for comprehension, and I felt like this could be expanded on for analytics practitioners and people working on data products.

One of the recurring themes I hear from my clients is around the topic of general engagement (or lack thereof) by end users/employees/stakeholders that are supposed to be benefitting from the insights of SAAS data products or internal analytics solutions. There are a lot of possible reasons why your engagement may be low, but there's a good chance that the design may be a potential reason. Unfortunately, not all design issues are immediately visible or visual in nature, but you can learn the skills to begin identifying them.

So, why are they business problems?

For internal analytics practitioners, if your customers/employees/users are "guessing" instead of using the tools you're providing them, then ultimately, you're not affecting their productivity or professional growth, and the company's investment in analytics is not returning a positive result overall.

On the other hand, if you've got a revenue-generating SAAS product, lack of engagement has a direct bottom-line impact: renewals. How long until somebody of importance notices they're paying for a service they never use? Do you really want to bank your business success on auto-renewal alone? The long-term value play is creating an indispensable service.

Here are some problems I frequently see when designing for analytics that go beyond standard data visualization issues. You should be examining and resolving these on an ongoing basis, in a proactive manner. (If you're sitting waiting for passive feedback, you're unlikely to ever "see" many of these issues). Most of these are not "once and done" problems, with simple tactical fixes. Discovering these strategic issues requires adopting ongoing behaviors your organization should develop, if you want to be able to consistently deploy meaningful value to your customers:

  1. Usability issues: getting the value from the service is too difficult, too long, not worth the effort. The only way to spot this and really understand how to fix the real issues are via 1x1 testing of tasks with customers. There are tons of tutorials on how to facilitate usability studies, and you can outsource the testing as well.
  2. Utility issues: while the user can "operate" the design properly, there is low value. This can be a result of vanity analytics, or displaying the evidence before displaying the practical value stemming from the evidence. This sometimes presents, in customer-speak, as "I get what it is showing me, but why would I want this?"
  3. Timing or context issues: your analytics, while useful and usable, are not coming at the right time in the user's lifecycle of use.
    1. For example, you may be presenting information that is perhaps only useful at year-end, yet your tool doesn't know this and continues to persist the information in the UI as if it is meaningful signal mid-year. Right info, wrong time. Perhaps your tool should adapt to business cycles and anticipate time-sensitive needs.
    2. Another example may be a situation where a customer perhaps needs a cyclical (e.g. monthly) readout, but your tool requires them to log in and fetch the data instead of just notifying them of the information at the time it is needed. This doesn't mean you need to run out and create a scheduler for every aspect of your solution. On the contrary, this can lead to other issues.
    3. A third example goes like this. Ever heard from a customer, "this is great stuff, but I'm [in my truck] by that time and dont have my computer with me. So I don't use your tool very much." In this case, perhaps a mobile experience would have led to more engagement by the driver of the truck, and therefore, more value for him, and for the company. When was the last time you did a ride-along with your drivers? Did you even know you had drivers? The point is, the context of use [while-driving-a-truck] was not considered at the time the design was provided [a desktop solution].
  4. Domain knowledge issues: the information presented contains technical jargon, or advanced domain knowledge that customers do not have yet. You can't reliably know this without talking to customers directly, and you'll need to hone your interview facilitation skills to acquire this type of information. This is in part due to the fact that it can be embarrassing, or perceived to be a risk, for customers/end users to admit they don't know what certain things mean. Your job is to help them realize that you're testing your design, and it is the design that failed, not them.
  5. Ambiguous Correlation/Causation relationships: is your design declarative or exploratory? If it's declarative, did you provide the right evidence for this? If you're trying to show correlation, is it clear to the user what relationships you're delineating?
  6. You're building a framework instead of solution. I see this one a lot. Every UI view on every page shares the same "features," and over time, the design becomes dictated by the backing APIs or the reusable code snippets engineering doesn't want to rework on a case-by-case basis. The reality is that you shouldn't be forcing patterns on people too early, and if you're not rigorously validating your designs with customers, you have no idea what aspects in the design should really be "stock" UI features. A simple example is table sorting/filtering: your default control/view for this, while seeming to be "uber flexible," may actually cause UX problems because the customer cannot understand "why would I ever want to sort this table by X? Why would I want to filter this?" In your attempt to provide flexibility by automatically allowing every table view to be filtered and sorted, you actually just increased the complexity of the tool for no good reason. You might have shipped more code faster, but you didn't provide more value.
  7. "We're using agile." Agile is not the same thing as agility, and while this could be an entire post on its own, using agile doesn't guarantee successful deployments of value to users. A lot of the time, agile is a buzzword for doing incremental (not iterative) development, and more often than not in my experience, there is little, if any customer design validation (usability testing or discovery work) being done. The other thing with popular Agile methods (e.g. modified scrum) is that there is no formal design phase, and the assumption is that all design and coding can always be done simultaneously. This is not always true, and it's even less true unless you have a seasoned design practice within your organization that has properly integrated itself. It's also *definitely* not true if you're conceiving a brand new service or product. 
  8. Knowledge gaps or distributed cognition issues:  The best way I can think to explain this is with an example. Let's pretend we have an analytics service that allows employees to make projections/predictions about things such as bulk purchasing decisions of some good for the next fiscal year. In reality, the person who is going to make a final business decision using your analytics doesn't really have or rely solely on the information required in your tool. Through observation of their use of your service (not just asking them!), you might find that your customer is accessing 2 or 3 different systems before making the purchasing decision, none of which share data with each other. In short, your analytics solution is really just "part" of their overall workflow/process, and you haven't mapped the way they actually make a purchasing decision to your software solution.

Remember: you cannot just "look" at your tool and consistently identify these design issues. Even with tons of design training, an expert cannot just "see" all of these issues either. You have to go into the field, observe users, and run structured usability studies. Asking customers what they want or think is also unreliable, because end users are not always aware of their behaviors and actions, and you're likely to get an incomplete (or inaccurate) depiction as they try to answer your questions "intelligently."

Focusing on what people are doing is much more truthful and enlightening for making good design decisions.

Good luck!

Want More Insights on Designing for Analytics?

What internal analytics practitioners can learn from analytics “products” (like SAAS)

When I work on products that primarily exist to display analytics information, I find most of them fall into roughly four different levels of design maturity:

  1. The best analytics-driven products give actionable recommendations or predictions written in prose telling a user what to do based on data.  They are careful about the quantity and design of the supporting data that drove the insights and recommendations being displayed, and they elegantly balance information density, usability, and UX.
  2. The next tier of products are separated from the top tier by the fact they're limited in their focus only on historical data and trends. They do not predict anything, however, they do try to provide logical affordances at the right time, and do not just focus on "data visualization."
  3. Farther down the continuum are products that have progress with visualizing their data, but haven't given UX as much attention.  It's possible for your product to have a *great* UI, and a terrible UX.  If customers cannot figure out "why do I need this?," "where do i go from here?," "is this good/bad?," or "what action should I take based on this information?," then the elegant data viz or UI you invested in may not be providing much value to your users.
  4. At the lowest end of the design maturity scale for analytics products are basic data-query tools that provide raw data exports, or minimally-designed table-style UIs. These tools require a lot of manual input and cognitive effort by the user to know how to properly request the right data and format (design!) it in some way that it becomes insightful and actionable. If you're an engineer or you work in a technical domain, the tendency with these UIs is to want to provide customers with "maximum flexibility in exploring the data." However, with that flexibility often comes a more confusing and laborious UI that few users will understand or tolerate. Removing choices is one of the easiest ways to simplify a design.One of my past clients used to call these products "metrics toilets," and I think that's a good name! Hopefully, you don't have a metrics toilet. *...Flush...*

What level is your product at right now?

Want More Insights on Designing for Analytics?

Failure rates for analytics, BI, and big data projects = 85% – yikes!

Not to be the bearer of bad news, but I recently found out just how many analytics, IOT, big data, and BI projects fail. And the numbers are staggering. Here's a list of articles and primary sources. What's interesting to me about many of these is the common issue around "technology solutions in search of a problem." Companies cannot define precisely what the analysis or data or IOT is supposed to do for the end users, or for the business.

And, it hasn't changed in almost a decade according to Gartner:

  • Nov. 2017: Gartner says 60% of #bigdata projects fail to move past preliminary stages. Oops, they meant 85% actually. 
  • Nov. 2017: lists 7 sure-fire ways to fail at analytics. “The biggest problem in the analysis process is having no idea what you are looking for in the data,” says Tom Davenport, a senior advisor at Deloitte Analytics (source)
  • May 2017: Cisco reports only 26% of survey respondents are successful with IOT initiatives (74% failure rate) (source)
  • Mar 2015: Analytics expert Bernard Marr on Where Big Data Projects Fail (source)
  • Oct 2008: A DECADE AGO - Gartner's #1 flaw for BI services: "Believing 'If you build it, they will come...'" (source)

There are more failure-rate articles out there.

Couple these stats with failure rates for startup companies and...well, isn't it amazing how much time and money is spent building solutions that are underdelivering so significantly? It doesn't have to be like this.

Go out and talk to your customers 1 on 1. Find a REAL problem to solve for them. Get leadership agreement on what success means before you start coding and designing. There's no reason to start writing code and deploying "product" when there is no idea of what success looks like for both the customers and the business.

Skip the design strategy part, and you'll just become another one of the statistics above.

Does your company have an interesting win or failure story you can share? Email me and tell me about it.

Want More Insights on Designing for Analytics?

My reactions to the Chief Data Officer, Fall 2017 conference summary

I ran into a an article about the Chief Data & Analytics Officer, Fall conference that summarized some of the key takeaways at the previous year's conference. One paragraph in the article stuck out to me:

The Great Dilemma – Product vs Project vs Capability Analytics Approaches
Although not one of these approaches will provide a universal solution, organisation’s must be clear on which avenue they’d like to take when employing enterprise analytics. Many speakers discussed the notion of analytics as a product/service, and the importance in marketing that product/service to maximise buy-in and adoption. However, analytics executives may look to take a capability-based approach, but one cannot simply build an arsenal of analytics capabilities without a clearly defined purpose and value generated for the business...

(Bolding added by me)

For companies pursuing internal analytics solutions, or creating externally-facing data products or solutions, the situation is basically the same: you cannot start with a bunch of data and metrics, visualize it, and then hope that you have a product/solution somebody cares about. The data isn't what is interesting: it is the actions or strategic planning one can take from the data that holds the value. You have to design the data into information, in order to get it to the point customers can grok this value.

I have found engineering-lead organizations that tend to operate in the "build first, find problem second" method, looking at design as something you bring in at the end to "make it look all pretty and nice." A good UX strategy is a good product strategy is a good analytics strategy: by spending time to understand the latent needs people have for your analytics/data up front, you're much more likely to generate a solution that solves for a need on the other side.

Want More Insights on Designing for Analytics?

Video Sample: O’Reilly Strata Conf

This is recording of my presentation at the O'Reilly Strata Data Conference in New York City in 2017.

Do you spend a lot of time explaining your data analytics product to your customers? Is your UI/UX or navigation overly complex? Are sales suffering due to complexity, or worse, are customers not using your product? Your design may be the problem.

My little secret? You don't have to be a trained designer to recognize design and UX problems in your data product or analytics service, and start correcting them today.

Want the Slides?

Download the free self-assessment guide that takes my slide deck principles and puts them into an actionable set of tips you can begin applying today.

Want More Insights on Designing for Analytics?

Getting confidence in the value of your data

(As shown to customers in your UI)

I'm talking to a prospective SAAS client right now, and they're trying to expose some analytics on their customers' data so that the customers can derive ROI from the SAAS on their own. The intent is that the data can also be useful to the SAAS sales team, as a tool to help prospects understand what the possible ROI might be.

I had a question for Dave around whether the project would be successful if we talked to the users, designed a bunch of interfaces, solicited feedback on the design outputs, and found out that the data, while interesting, didn't really help the customers derive ROI. Would the design engagement still be productive and a success in the end? Ultimately, I didn't want to take on a project if we had hunches that the data we had, while being the best possible available data and elegantly presented, may not help the end user or buyer calculate ROI.

Here's what Dave told me:

Yes, the design engagement would still be a success. It provides us a punchlist of what else we need to do, which is in-and-of-itself is useful; and presumably defines what the analysis/reporting needs would be once we get that data. Less of a success, or more of a delayed-gratification one, but still useful.

I thought this was interesting to share, and I hoped Dave would say this because it shows that sometimes, you have to do some design to figure out what the final design needs to be. You can't always plan ahead what the right solution is and moving from designing on assumption to designing on fact is powerful information to inform your product.

Conversely, you can also spec out the entire project, including all the data/queries that customers said would be useful, write it into a spec or backlog, code it up, skip design, and then still have it not be successful because customers couldn't actually experience the ROI that your data was supposed to convey. A product backlog does not = a viable product. It's just a bunch of user stories or features. The glue holding them together, and what helps customers realize the ROI, is design.

Want More Insights on Designing for Analytics?

Tips to help focus your analytics design/engineering efforts on results

If you are starting out on a new feature design, or analytics effort, can you clearly state what the value will be in quantifiable terms at the end of the sprint?

Are you building an "exploratory" UI, or one that is supposed to drive home conclusions for the customer?

When clients come to me about product design engagements, I spend a lot of time trying to understand, at the end of the project, how success will be measured. Frequently, my clients haven't thought this out very much. I think that's natural; when you're close to your data, you can probably see a lot of ways it could be "visualized" or that value could be pulled out. But, when it's time to get specific, are you and your team able to clearly share a vision of what the desired end state is?

Here are some examples of goals and success criteria I've seen with my design clients. Having these types of success metrics makes it much easier for everyone involved on the project to know if they're on track to deliver value:

  • SAAS Example: Make it easier for the sales team to sell our product by surfacing interesting analytics that help customers see the value of the product. Ideally, a 30-day closing period for a sale drops to a 1-week closing period.
  • IT Software Example: Remove unnecessary troubleshooting time from the customer's plate by running analytics to either surface a problem, or eliminate what isn't the problem. This is a reduction in customer tool-time effort. If we can drop troubleshooting time by 50%, that is worth $X per incident (the business impact time + the manpower/labor time saved).
  • Generic example: Help the customer understand what interesting outliers are in the data so they can take action. There are opportunities to exploit if the outliers are interesting. Our analytics should help surface these outliers, and qualify them as well. If we can save 10hrs a week of "exploration" time the customer has to do by surfacing this data early in the UX, that is a substantial labor savings ox $x as well as overall product quality/delight since the users can now focus on what's really important in their job (not the "hunt").

This is the start of making any design engagement successful.

Got some of your own goals/metrics to share? Hit reply; I would love to hear them.  If you're embarking on a design project and need help getting these defined,  you can schedule a free micro-consult with me below.

Want More Insights on Designing for Analytics?

“Post-truth,” data analytics, and omissions–are these design considerations?

Post-truth. The 2016 word of the year.

Yikes for some of us.

This got me thinking about UX around data, analytics, and information, and what it means when we present conclusions or advice based on quantitative data.

Are those "facts"?

If your product generates actionable information for customers, then during your design phase, your team should be asking some important questions to get the UX right:

  • What risk is there to our customer if the data is wrong or could be interpreted incorrectly [easily]?
  • What information might we want to include to help customers judge the quality of the information the product generates?
  • If our technology analyzes raw data to provide actionable information, are there relevant analyses that the product did not run that the customer might need to contextualize the conclusions drawn?
  • Is our product (and company) being genuine, honest, and transparent when appropriate?
    (That's how I roll at least, and few scenarios suggest this ever is bad advice.)
  • Is the display of supporting data considered and as unbiased as possible?
    (Notably: did you design the presentation of the information before coding it, or did you just dump it into a charting tool?)

Part of getting a product's design and UX right is knowing what questions to ask.

Let's take a quick example many of us without pensions can relate to: retirement savings.

Let's say you work at a financial institution and you're supposed to design an online tool that can help customers understand how much income they need for retirement, and specifically, what monthly savings target they should have in mind to reach that goal. A wise design-thinking product owner will be considering issues beyond how the UI works, the sliders and input fields on the forms, and the way the output charts look.

If we're talking about "truth" in the context of design, I'd hope the product team considered:

  • How confident are the displayed estimates?
  • Since this is a predictive tool, did the app run one than one type of simulation before generating advice?
  • Did the app factor in unique characteristics of the user, such as their own behavior to date (if known)?
  • Does the design clearly mention relevant variables that the tool cannot control for, and also how much those variables might affect the predictions that are shown?

How much, and how loudly a tool answers these questions depends on the content, risk, customer problems, and needs.

Sometimes these things don't need to be "answered" literally in ink because not all customers will care, or they might just assume that your calculator already does all this magic.  And, there are times when all the ink might just be noise (e.g. weather forecasts).

All that said, I am not sure "post-truth" fits in anywhere with good product design.

Want More Insights on Designing for Analytics?